GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S3

Paper D MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S3 Paper D – Marking Guide

1.	(a)	list volunteers from random pt in table look at 2-digit nos until get one from 01 to 12 take this one from list and then every 12 th person on list	B3	
	(b)	e.g. advantage – quicker disadvantage – not random unless list is, so may introduce bias	B2	(5)
2.	(<i>a</i>)	$\overline{x} = \frac{1419}{30} = 47.3$	M1	
		C.I. is $\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{\pi}} = 47.3 \pm 1.96 \frac{5}{\sqrt{30}}$	M1 A1	
		giving (45.51, 49.09)	A2	
	<i>(b)</i>	$\frac{19}{20}$	B1	
	(c)	it either does or doesn't include true mean \therefore probability is 0 or 1	B1	(7)
3.	(a)			
		candidate A B C D E F		
		exp. rank $3 \ 1 \ 4 \ 6 \ 5 \ 2$		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$\Sigma d^2 = 22$	M2 A1	
		$r_s = 1 - \frac{6 \times 22}{6 \times 35} = 0.3714$	M2 A1 M1 A1	
	(b)	$H_0: \rho = 0$ $H_1: \rho > 0$	B1	
		$n = 6,5\%$ level \therefore C.R. is $r_s > 0.8286$	M1 A1	
		$0.3714 < 0.8286$ \therefore not significant there is no evidence of positive correlation	A1	
	(c)	e.g. needs training as assessment not in line with experienced manager	B1	(10)
4.	<i>(a)</i>	$\hat{\mu} = \overline{t} = \frac{1039}{30} = 34.6$	M1 A1	
		$\hat{\sigma}^2 = s^2 = \frac{30}{29} \left(\frac{65393}{30} - 34.633^2 \right) = 1014.1$	M1 A1	
	<i>(b)</i>	$\frac{\sum x}{20} = 32.0$: $\Sigma x = 640$ $\hat{\mu}$ for combined sample = $\frac{1039+640}{50} = 33.6$	M1 A1	
		963.4 = $\frac{20}{10} \left(\frac{\sum x^2}{20} - 32.0^2 \right)$ giving $\Sigma x^2 = 38784.6$	M1 A1	
		$\hat{\sigma}^2$ for combined sample = $\frac{50}{49} \left(\frac{65393+38784.6}{50} - 33.58^2 \right) = 975.4$	M1 A1	(10)
5.	<i>(a)</i>	let W = weight of egg		
		let $A = W_1 - W_2$ \therefore $A \sim N(0, 2 \times 3.9^2) = \sim N(0, 30.42)$	M1 A1	
		require $2 \times P(A > 4) = 2 \times P(Z > \frac{4-0}{\sqrt{30.42}})$	M1	
		$= 2 \times P(Z > 0.73) = 2 \times (1 - 0.7673) = 0.465$	M1 A1	
	<i>(b)</i>	let $T = $ total weight of box and eggs		
		$\therefore T \sim N(28 + 6\times55, 1.2^2 + 6\times3.9^2) = \sim N(358, 92.7)$	M1 A2	
		$P(T < 350) = P(Z < \frac{350 - 350}{\sqrt{92.7}})$	M1	
		= P(Z < 0.83) = 1 - 0.7967 = 0.2033	M1 A1	(11)

6. (*a*)

7.

		accident	no accide	nt				
-	< 25 yrs	104	216	in	320			
	$\geq 25 \text{ yrs}$	16	64		80			
-	2	120	280		400		M1 A1	
(i)	(i) expected freq. $< 25/\text{accident} = \frac{120\times320}{400} = 96$							
	giving expected freqs 96 224						. 1	
	$H_{a} \cdot n_{0} as$	soc'n hetweer	24 50 Lage pass te	est and ac	cident in nex	t 2 vrs	AI	
	H_1 : there	is assoc'n bet	ween age pa	ass test a	nd acc in nex	t 2 yrs	B1	
	0	E	(O-E)	$\frac{(O-E)^2}{E}$		-		
	104	96	8	0.6667				
	216	224	-8	0.2857				
	16	24	-8	2.6667				
	64 (0 F)	2 56	8	1.1429				
	$\therefore \Sigma \frac{(O-E)}{E}$	- = 4.762					M1 A2	
	$v = 1, \chi^2_{cri}$	t(5%) = 3.841	1				M1 A1	
	4.762 > 3.	841 ∴ signif	ficant				A 1	
(ii)	evidence of using total	of assoc n bet	ween age pa	iss test ai	nd acc in nex	t 2 yrs	AI	
(11)	can calcul	ate all others	t agree, onec		ne value		B1	
					_			
high	her proportion	of accidents	in < 25 led t	to signifi	cant result		DJ	(15)
Сли	a data mereas	tes uns uniere		significa	iit.		D2	(15)
let <i>X</i>	let $X =$ length of adult male feet							
P(2	1.5 < X < 24.5	$(5) = P(\frac{21.5 - 22}{2.8})$	$\frac{4}{24.5}$ < Z < $\frac{24.5}{24.5}$	$\frac{5-22.4}{2.8}$)			M1	
	= P(⁻	0.32 < Z < 0.7	(75) = 0.7734	4 – (1 – C	(0.6255) = 0.3	989	M1 A1	
exp	freq. = 0.398	$89 \times 200 = 79$.78				A1	
P(24	4.5 < X < 27.5	(5) = P(0.75 <	$Z < \frac{27.5 - 22.4}{2.8}$	<u>4</u>)				
	= P(0)	.75 < Z < 1.82	2) = 0.9656 -	- 0.7734	= 0.1922		M1	
exp	exp. freq. = $0.1922 \times 200 = 38.44$						A1	
exp	. freq. for > 2	7.5 = 200 - tc	otal of others	s = 6.88			A1	
H ₀ :	N(22.4, 2.8 ²)) is a suitable	model					
H_1 :	$N(22.4, 2.8^2)$) is not a suita	ble model	,			B1	
	0	E $(O-L)$	$E) \qquad \frac{(O-E)^2}{E}$	_				
	24 16	5.46 7.54	3.453	9				
	48 58	-10.4	14 1.865	1				
	69 79	9.78 -10.7	1.456	6				
	41 50	8.44 2.50 88 11.1	0.1703	5 30				
	$(O-E)^2 - 24$	010					M1 A2	
2	$\frac{1}{E} = 24.$	(100)	-				MI AZ	
v = 24.0	$5 - 1 = 4, \chi^{-1}$	$r_{rit}(10\%) = 7.7$	79				MI AI	
24.5 N(2	$(2.4, 2.8^2)$ is n	ot a suitable r	nodel				A1	
use	use data to estimate mean and std. dev.							
com	bine any cell	s with exp. fre	eqs. < 5 and	repeat ca	alculation			
<i>v</i> =	no of cells af	ter combining	s - 3 as parameters of $s - 3$ as parameter	meters h	ave been esti-	mated	B3	(17)
							Total	(75)

Performance Record – S3 Paper D

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	sampling	confidence interval	Spearman's, hyp. test	unbiased estimates	linear comb. of Normal r.v.	conting. table	goodness of fit, Normal	
Marks	5	7	10	10	11	15	17	75
Student								